Research on Ductile-brittle Transition Characteristics of 11MnNiMo Steel with Fatigue Damage Based on Master Curve Method

ZHOU Chen, ZHANG Guangjun, LIU Guang, HE Jian, WANG Yulin, LI Haidong

Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (10) : 102-108.

PDF(3105 KB)
PDF(3105 KB)
Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (10) : 102-108. DOI: 10.7643/ issn.1672-9242.2025.10.013
Key Projects Equipment

Research on Ductile-brittle Transition Characteristics of 11MnNiMo Steel with Fatigue Damage Based on Master Curve Method

  • ZHOU Chen1, ZHANG Guangjun1, LIU Guang1, HE Jian2, WANG Yulin2, LI Haidong1, *
Author information +
History +

Abstract

The work aims to investigate the effect of fatigue damage on the ductile-brittle transition characteristics of 11MnNiMo steel. The distribution of impact absorption energy of non-destructive 11MnNiMo steel and 11MnNiMo steel with 2 mm fatigue cracks at different temperature was studied based on the Charpy impact test method and the main curve method. The hyperbolic tangent function was employed to fit the temperature-dependent impact absorbed energy, determine the master curve's reference temperature, and derive the master curve equation for 11MnNiMo steel. Fracture morphologies at various temperature were observed via scanning electron microscopy to validate the master curve method's effectiveness in determining the ductile-brittle transition characteristics of 11MnNiMo steel. The results showed that the main curve method could accurately determine the ductile brittle transition characteristics of both non-destructive and fatigue damaged 11MnNiMo steel. The reference temperature for ductile brittle transition of non-destructive 11MnNiMo steel was ‒83 ℃, and that of 11MnNiMo steel with 2 mm fatigue cracks was ‒27 ℃. Compared with non-destructive 11MnNiMo steel, a 2 mm fatigue crack increases the reference temperature for ductile brittle transition of 11MnNiMo steel by 67%, making it more prone to brittle fracture. This study is of great significance for evaluating and predicting the fatigue life and safety of 11MnNiMo steel in practical engineering applications, providing a theoretical basis for subsequent material performance optimization and structural design.

Key words

pre-fabricated fatigue crack / master curve method / 11MnNiMo steel / Charpy impact test / ductile brittle transition reference temperature / scanning electron microscope technology

Cite this article

Download Citations
ZHOU Chen, ZHANG Guangjun, LIU Guang, HE Jian, WANG Yulin, LI Haidong. Research on Ductile-brittle Transition Characteristics of 11MnNiMo Steel with Fatigue Damage Based on Master Curve Method[J]. Equipment Environmental Engineering. 2025, 22(10): 102-108 https://doi.org/10.7643/ issn.1672-9242.2025.10.013

References

[1] 张有为, 周细应, 贾涵浩, 等. 低合金高强钢不预热焊接技术的研究与进展[J]. 热加工工艺, 2016, 45(11): 11-13.
ZHANG Y W, ZHOU X Y, JIA H H, et al.Research and Progress of Non-Preheating Welding Technique of Low Alloy High-Strength Steel[J]. Hot Working Technology, 2016, 45(11): 11-13.
[2] 权国政, 陈涛, 石彧, 等. 退火20MnNiMo合金高温流变行为的一种本构描述[J]. 材料热处理学报, 2012, 33(7): 147-152.
QUAN G Z, CHEN T, SHI Y, et al.A Constitutive Description for Hot Flow Behavior of As-Annealed 20MnNiMo Alloy[J]. Transactions of Materials and Heat Treatment, 2012, 33(7): 147-152.
[3] 王根田. 20MnNiMo核电用钢的热变形宏微观演化行为研究[D]. 重庆: 重庆大学, 2016.
WANG G T.Study on Macro- and Micro-Evolution Behavior of Thermal Deformation of 20MnNiMo Nuclear Power Steel[D]. Chongqing: Chongqing University, 2016.
[4] 宫琳, 徐任杰. 关于装备体系韧性的几点思考[J]. 空天防御, 2023, 6(3): 1-5.
GONG L, XU R J.Thoughts on the Resilience of Equipment System-of-Systems[J]. Air & Space Defense, 2023, 6(3): 1-5.
[5] 苏艳, 苏虹, 胡秉飞, 等. 低温环境对3种结构钢力学性能的影响研究[J]. 装备环境工程, 2022, 19(3): 118-125.
SU Y, SU H, HU B F, et al.Influence of Low Temperature Environment on Mechanical Performance of Three Structural Steels[J]. Equipment Environmental Engineering, 2022, 19(3): 118-125.
[6] 许鹤君, 梅坛. 混合型断口金属材料韧脆转变温度评价的仪器化冲击试验[J]. 理化检验-物理分册, 2023, 59(10): 13-18.
XU H J, MEI T.Instrumented Impact Test for Ductile-Brittle Transition Temperature Evaluation of Mixed Fracture Metal Materials[J]. Physical Testing and Chemical Analysis (Part A (Physical Testing)), 2023, 59(10): 13-18.
[7] 黄俊, 李阳阳, 袁国虎, 等. 掺杂Y2O3钨基复合材料在近韧脆转变温区的静载拉伸特性[J]. 机械工程材料, 2023, 47(11): 18-24.
HUANG J, LI Y Y, YUAN G H, et al.Static Tensile Properties near Ductile-Brittle Transition Temperature Region of W-Based Composites Doped with Y2O3[J]. Materials for Mechanical Engineering, 2023, 47(11): 18-24.
[8] 耿祥, 罗广南, 王万景, 等. 四点弯曲法测量钨材料韧脆转变温度及其与其他测试方法的比较研究[J]. 稀有金属材料与工程, 2021, 50(11): 4089-4094.
GENG X, LUO G N, WANG W J, et al.Measurement of Ductile-Brittle Transition Temperature of Tungsten Materials by Four-Point Bending Method and Its Comparison with Other Methods[J]. Rare Metal Materials and Engineering, 2021, 50(11): 4089-4094.
[9] 黄俊, 袁国虎, 左彤, 等. 基于小冲杆试验的纯钨韧脆转变温度测定及其变形特性[J]. 机械工程材料, 2024, 48(7): 11-16.
HUANG J, YUAN G H, ZUO T, et al.Ductile-Brittle Transition Temperature Measuring and Deformation Characteristics of Pure Tungsten Based on Small Punch Testing[J]. Materials for Mechanical Engineering, 2024, 48(7): 11-16.
[10] ASTM. Standard Test Method for Determination of Reference Temperature, T0, for Ferritic Steels in the Transition Range: ASTM E1921—2019[S]. Philadelphia: American Society for Testing and Materials, 2019.
[11] 惠虎, 王佳欢, 王仙河, 等. 基于主曲线方法确定2.25Cr-1Mo钢韧脆转变区的断裂韧度[J]. 机械工程材料, 2015, 39(1): 98-101.
HUI H, WANG J H, WANG X H, et al.Determination of Fracture Toughness of 2.25Cr-1Mo Steel in Transition-Temperature Region Based on Master Curve Method[J]. Materials for Mechanical Engineering, 2015, 39(1): 98-101.
[12] 孔祥伟, 李绪清, 兰亮云, 等. Q390钢韧脆转变区冲击吸收功的类主曲线模型[J]. 东北大学学报(自然科学版), 2018, 39(5): 663-667.
KONG X W, LI X Q, LAN L Y, et al.Impact-Energy Principle Resembling Master Curve Model of Q390 Steel in Transition Temperature Region[J]. Journal of Northeastern University (Natural Science), 2018, 39(5): 663-667.
[13] 胡馨丹, 惠虎, 张亚林, 等. 基于多模主曲线法估计韧脆转变区间热影响区断裂韧度[J]. 压力容器, 2021, 38(1): 15-22.
HU X D, HUI H, ZHANG Y L, et al.Estimation of Fracture Toughness of Heat Affected Zone in Ductile-to-Brittle Transition Zone Based on Multimodal Master Curve Method[J]. Pressure Vessel Technology, 2021, 38(1): 15-22.
[14] 巫元俊, 徐习凯, 包陈, 等. 考虑几何尺寸影响的RPV钢韧脆转变实验研究[J]. 力学学报, 2023, 55(10): 2363-2372.
WU Y J, XU X K, BAO C, et al.Experimental Study on ductile-to-Brittle Transition of Rpv Steel Considering Geometric Size[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2363-2372.
[15] 曹昱澎, 惠虎, 轩福贞. 基于小尺寸试样的主曲线参考温度T0的确定方法[J]. 压力容器, 2011, 28(7): 17-23.
CAO Y P, HUI H, XUAN F Z.Reference Temperature Determination of Master Curve for 16MnR Steel Using Small Specimens[J]. Pressure Vessel Technology, 2011, 28(7): 17-23.
[16] 李一磊, 李朋洲, 姚迪, 等. 金属材料裂纹冲击韧性评定方法研究[J]. 核动力工程, 2021, 42(5): 114-118.
LI Y L, LI P Z, YAO D, et al.Study on Crack Impact Toughness Evaluation Method for Metallic Materials[J]. Nuclear Power Engineering, 2021, 42(5): 114-118.
[17] 李一磊, 姚迪, 乔红威, 等. 金属材料中低加载速率下的动态韧脆转变及断裂韧性测量[J]. 力学学报, 2021, 53(2): 424-436.
LI Y L, YAO D, QIAO H W, et al.Dynamic ductile-Brittle Transition and Fracture Toughness Measurement of Metal under intermediate-Low Loading Velocities[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 424-436.
[18] KIM W.The Scatter in K IC Results[J]. Engineering Fracture Mechanics, 1984, 19(6): 1085-1093.
[19] KIM W.The Size Effect in K IC Results[J]. Engineering Fracture Mechanics, 1985, 22(1): 149-163.
[20] BEREJNOI C, PEREZ IPIÑA J E. Analysis of Size and Temperature Effects in the Ductile to Brittle Transition Region of Ferritic Steels[J]. Engineering Fracture Mechanics, 2015, 148: 180-191.
[21] 国家标准化管理委员会. 金属材料夏比摆锤冲击试验方法: GB/T 229—2020[S]. 北京: 中国标准出版社, 2020.
Standardization Administration of the People's Republic of China. Metallic Materials—Charpy Pendulum Impact Test Method: GB/T 229—2020[S]. Beijing: Standards Press of China, 2020.
[22] 国家标准化管理委员会. 金属材料预裂纹夏比试样冲击加载断裂韧性的测定: GB/T 38769—2020[S]. 北京: 中国标准出版社, 2020.
Standardization Administration of the People's Republic of China. Metallic Materials—Measurement of Fracture Toughness at Impact Loading Rates Using Precracked Charpy-Type Test Pieces: GB/T 38769—2020[S]. Beijing: Standards Press of China, 2020.
[23] CAO L W, WU S J, FLEWITT P E J. Comparison of Ductile-to-Brittle Transition Curve Fitting Approaches[J]. International Journal of Pressure Vessels and Piping, 2012, 93: 12-16.
[24] GAO J, JU X C, ZUO Z K, et al.Experimental Investigation on the Low Temperature Fracture Performance of Q690 Steel for Application to Long-Span High-Speed Railway Bridges in Tibet Harsh Environment[J]. Structures, 2022, 44: 503-513.
[25] XUE C Y, YANG M M, LIU P, et al.Fracture Toughness and Fracture Mechanism of EH47 High-Strength Steel Subjected to Different Temperatures[J]. Metallurgical and Materials Transactions A, 2022, 53(10): 3588-3603.
[26] 扬帆. 基于Master Curve方法的A508-Ⅲ钢小尺寸断裂韧性试样加工关键问题的研究[D]. 上海: 华东理工大学, 2015.
YANG F.Research on Processing Key Problems of Nuclear Steel A508-Ⅲ Compact Tension Specimen Based on Master Curve Approach[D]. Shanghai: East China University of Science and Technology, 2015.
PDF(3105 KB)

Accesses

Citation

Detail

Sections
Recommended

/